

Nickel-Catalyzed Multicomponent Coupling of Alkynes

-Recent development in methodologies and applications

Zhenjie Lu

Department of Chemistry, MSU

January 28, 2004

Background Introduction

> Conjugate addition using cuprates - well established reactions

- Stoichiometric copper complex must be used.
- Alkenylcuprate are thermally unstable.
- The loss of double bond stereochemistry may occur.
- Conjugate addition using nickel-catalyzed transmetallation process

1. Carey, F. A.; Sundberg, R. J. *Advanced Organic Chemistry. Part B*, 2001, 477. 2. Schwartz, J.; Loots, M. J.; Kosugi, H. *J. Am. Chem. Soc.* **1980**, *102*, 1333.

Nickel Catalyzed Multi-Component Coupling of Alkynes - A General Scheme

1. Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1994, 116, 5975.

2. Ikeda, S.; Yamamoto, H.; Kondo, K; Sato, Y. Organometallics. 1995, 14, 5015.

Major Contributors in the Field

Professor John Montgomery Wayne State University

 Intramolecular coupling of enones or enals with alkynes

Professor Shin-ichi Ikeda Nagoya City University

 Intermolecular coupling of enones or enals with alkynes

Professor Timothy F. Jamison Massachusetts Institute of Technology

 Asymmetric coupling of aldehydes, imines and epoxides with alkynes

Professor Miwako Mori Hokkaido University

 Coupling of CO₂ with alkynes, and aldehydes with dienes

Outline

Intramolecular Cyclization of Enones with Alkynes

Single Cyclization of Enone and Alkyne

Bu

19

47

Montgomery, J.; Savchenko, A. V. J. Am. Chem. Soc. 1996, 118, 2099.

PPh₃

Ph

5

Intramolecular Coupling of Enones or Enals with Alkynes

Proposed Mechanism

1. Montgomery, J.; Savchenko, A. V. J. Am. Chem. Soc. 1996, 118, 2099.

2. Montgomery, J.; Oblinger, E.; Savchenko, A. V. J. Am. Chem. Soc. 1997, 119, 4911.

3. Montgomery, J. Acc. Chem. Res. 2000, 33, 467.

X-ray Structures of Nickel-metallocycles

* X-ray structures of the nickel-metallocycles supported the proposed mechanism.

Amarasinghe, K. K. D.; Chowdhury, S. K.; Heeg, M. J.; Montgomery, J. Organometallics. 2001, 20, 370.

Total Synthesis of Isogeissoschizoid Skeleton

Fornicola, R. S.; Subburaj, K.; Montgomery, J. Org. Lett. 2002, 4, 615.

Alkylative Coupling - Vinyl Zr as Coupling Partner

entry	R^1	R ²	R ³	yield, %
1	Ме	Ph	C_6H_{13}	74
2	Ph	Н	C_6H_{13}	80
3	Ph	Ме	(CH₂)₄OTBS	75
4	Н	Ph	C_6H_{13}	68
5	Н	Ме	Ph	66

Total Synthesis of Isodomoic Acid G

Ni, Y.; Amarasinghe, K. K. D.; Ksebati, B.; Montgomery, J. Org. Lett. 2003, 5, 3771.

Discovery of [2+2+2] Cyclization

Seo, J.; Chui, H. M. P.; Heeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 476.

Intramolecular Coupling of Enones or Enals with Alkynes

[2+2+2] Cyclization

Seo, J.; Chui, H. M. P.; Heeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 476.

Intramolecular Coupling of Enones or Enals with Alkynes

[3+2] Cyclization

• Single diastereomer obtained in entry 1~4.

^{1.} Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6775.

^{2.} Mahandru, G. M.; Skauge, A. R. L.; Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J; Montgomery, J. J. Am. Chem. Soc. 2003, 125, 13481.

Proposed Mechanism of [3+2] Cyclization

Mahandru, G. M.; Skauge, A. R. L.; Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J; Montgomery, J. *J. Am. Chem. Soc.* **2003**, *125*, 13481.

Cascade Cyclization

> Cyclization of β - substituted enal

\succ Cyclization of α - substituted enal

Mahandru, G. M.; Skauge, A. R. L.; Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J; Montgomery, J. *J. Am. Chem. Soc.* **2003**, *125*, 13481.

Proposed Mechanism of Two Cyclizations

1. Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6775.

2. Montgomery, J.; Amarasinghe, K. K. D.; Chowdhury, S. K.; Oblinger, E.; Seo, J.; Savchenko, A. V. Pure. Appl. Chem. 2002, 74, 129.

Catalytic Enantiomeric Intermolecular Coupling

Ikeda, S. I.; Cui, D. M.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 4712.

Intermolecular Coupling of Enones or Enals and Alkynes

Cyclic Cotrimerization

1. Ikeda, S. I.; Mori, N.; Sato, Y. *J. Am. Chem. Soc.* **1997**, *119*, 4779. 2. Ikeda, S. I. *Acc. Chem. Res.* **2000**, *33*, 511.

Control of Regioselectivity in Trimerization with the Same Alkyne

entry	ligand	n	R	yield, % (a + b)	ratio (a : b)
1	PPh_3	2	Bu	83	92:8
2	Α	2	Bu	81	100:0
3	PPh_3	1	TMS	33	0:100
4	Α	1	TMS	69	96:4
5	PPh_3	1	<i>t</i> -Bu	45	11:89
6	Α	1	<i>t</i> -Bu	67	100:0

1. Mori, N.; Ikeda, S. I.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 2722.

2. Ikeda, S. I.; Kondo, H.; Mori, N. Chem. Commun. 2000, 815.

Intermolecular Coupling of Enones or Enals and Alkynes

Control of Enantioselectivity in Trimerization with the Same Alkyne

• Regioselectivity > 95:5 in every example.

Ikeda, S. I.; Kondo, H.; Arii, T.; Odashima, K. Chem. Commun. 2002, 2422.

Intermolecular Coupling of Enones or Enals and Alkynes

Summary of Intermolecular Coupling

Introduction to The Coupling of Aldehydes and Alkynes

Catalytic Reductive Coupling of Aldehydes

entry	R ³	R ¹	R^2	product	yield, %(regioselectivity)
1	Ph	Н	<i>n</i> -Hex	Hex	76% (96:4)
2	<i>o-</i> tolyl	Me	Ph	Ph He Me	83% (93:7)
3	<i>n</i> -Pr	Me	Ph	Ph Pr Me	85% (92:8)
4	<i>n</i> -Hept	SiMe ₃	Ph	Ph Hept SiMe ₃	89% (>98:2)

Huang, W. S.; Chan, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221.

Proposed Mechanism

Catalytic Asymmetric Coupling of Aliphatic Alkynes

Colby, E. A.; Jamison, T. F. J. Org. Chem. 2003, 68, 156.

Catalytic Asymmetric Coupling of Aromatic Alkynes

60 (>95:5)

82 (>95:5)

79 (91:9)

35

96

65

73

42

i-Pr

n-Pr

Ph

i-Pr

3

4

5

Proposed Model for Enantio- and Regioselectivity

1. Miller, K. M.; Huang, W. S.; Jamison, T. F. *J. Am. Chem. Soc.* 2003, 125, 3442.

2. Whittall, I. R.; Humphrey, M. G.; Samoc, M.; Luther-Davies, B.; Hockless, D. C. R. J. Organomet. Chem. 1997, 544, 189.

Total Synthesis of (-)-Terpestacin

Chan, J.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 11514.

Total Synthesis of (+)-Allopumiliotoxin 339A

Tang, X.Q.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6950.

Two-Step Four-Component Coupling

Lozanov, M.; Montgomery, J. J. Am. Chem. Soc. 2002, 124, 2106.

Summary of Coupling Reaction Between Aldehydes and Alkynes

Other Electrophile Equivalents

Coupling of Alkynes and CO₂

- R^1 = Ph, Bz, Bu, Me, alkylative product; R^1 = Et, major product is reductive coupling product.
- An efficient way to prepare β , β '-disubstituted α , β -unsaturated acid under mild conditions.

Proposed mechanism

Total Synthesis of Erythrocarine

Imine as Electrophile Equivalent

1. Patel, S. J.; Jamison, T. F. Angew.Chem. Int. Ed. 2003, 42, 1364.

2. Miller, K. M.; Molinaro, C.; Jamison, T. F. Tetrahedron: Asymm. 2003, 14, 3619.

Coupling of Other Electrophile Equivalents and Alkynes

Imine as Electrophile Equivalent

^{1.} Patel, S. J.; Jamison, T. F. Angew.Chem. Int. Ed. 2003, 42, 1364.

2. Miller, K. M.; Molinaro, C.; Jamison, T. F. Tetrahedron: Asymm. 2003, 14, 3619.

Epoxide as Electrophile Equivalent

Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076.

Multicomponent Coupling of Alkynes

Summary

Recent Applications in Total Synthesis

Future Development

Alkylative coupling of aldehyde

> Coupling of ketone for the generation of tetra-substituted alkene & tertiary allylic alcohol

Future Development

Tandem coupling-aldol condensation

Control of absolute stereochemistry

Acknowledgement

Professor William Wulff Professor Jetze Tepe

Wulff Group Members:

Jie Mannish Chunrui Zhensheng Gang Keith Kostas Yu Victor Glenn Vijay Newman Reddy Alex Friends:

Feng Yana Jun Tao Chang Lingling Xiaoyu Lei Jason